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Abstract—MapReduce (MR) has been one of the popular computing framework for analyzing semi-

structured and unstructured BigData and processing application in last decade; further Hadoop MR (HMR) 

framework is an open source platform which is the widely used MR framework. Moreover, existing HMR 

scheduling design faces major issues like I/O overhead and memory overhead. In this research work, we focus 

on developing resource efficient memory aware scheduler for HMR namely REMAS-HMR for efficient 

utilization of system resources and data processing in real time. REMAS-HMR is developed for analyzing the 

Global Memory Management; thus minimizing the Disk I/O seek. Further, modelled makespan model for 

mitigating intermediate task failures in REMAS-HMR. The REMAS method are evaluated on the Microsoft 

Azure HDInsight cloud platform in consideration with text mining and clustering applications, also 

comparative analysis with the existing model is carried out. Further, comparative analysis shows that REMAS 

model outperforms existing model in terms of makespan, computational cost, memory utilization, and core-

resource utilization. 

Keywords—Cloud computing, I/O optimization, Iterative model, MapReduce, Memory Aware, 

Performance modelling, Resource utilization, Task scheduling. 

I.  INTRODUCTION 

Several organization such as educational institution, government and industry gathers huge volume of 

unstructured data through various sources like WWW, bioinformatics, social network, sensor network and so 

on for different purpose. Moreover analyzing these unstructured data has become one of the desired work for 

various organization; however state-of-art approach fails to perform considering the real time scenario on the 

stream data. In case of real time scenario, data based platform like google have designed the parallel 

computational approach named MR (MapReduce) framework [1]; this particular framework offers parallel 

execution in distributed manner. HMR(Hadoop MapReduce) [2] is one of the popular and widely adopted tool 

in comparison with other tools like Phoenix [3], Mars[4] and Dryad [5]; as HMR is open source [6]. HMR 

model comprises various phases which includes Setup, Mapping, shuffling and Reduce; these are shown in 

figure1; moreover HMR have computing nodes cluster and master node. Further, Jobs assigned to Hadoop are 

shared into Mapping and Reducing tasks; in setup phase, input data are divided into particular volume known 

as chunks for Map nodes. Furthermore, Hadoop parts MR (MapReduce) jobs into various task set where each 
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chunk are processed through MapWorker; in general Map phase accepts the input in certain form as 

(𝑘𝑒𝑦1 , 𝑣𝑎𝑙𝑢𝑒1) key/value and creates further intermediate pair of key/value (𝑘𝑒𝑦2, 𝑣𝑎𝑙𝑢𝑒2) as an output. Shuffle 

phase starts after Map phase completion where intermediate key and value pair are gathered from Map Task; 

sorting is carried out on the intermediate pair of key/value. In general sorting and shuffling are combined in 

shuffling phase, also reduce phase process the data in accordance with UDF (User Defined Function). At last 

reduce phase output is written and stored in HDFS aka Hadoop distributed-FS (File system).  

 

Fig. 1. Hadoop MapReduce (HMR) Model 

Azure HDInsight platform provides flexibility to achieve the desired performance; for instance, user sets up 

and imply the Hadoop application for huge scale cluster. Azure HDInsight provides user for configuring the 

resource amount needed for performing particular task. Moreover, Azure HDInsight does not provide 

flexibility and fails to support job with deadline requirement; further, onus is on side of client for computing 

the resource requirement computation for meeting the task deadline as it is considered as one of the challenging 

task. Furthermore, Hadoop makespan is very essential model while computing the resource required to 

maintain the task deadline, also it is observed that Hadoop jobs involves various processing stage which is 

composed of three integrated phase namely Mapping, Shuffling and Reduction. In here, each phase requires 

I/O  and memory operation; further, in shuffle phase first sub phase are processed in parallel along with 

Mapping phase (also considered as overlapping phase) and other sub-phase of shuffle phase is processes after 

completion of Mapping phase (also considered as non-overlapping phase). Moreover, to utilize the cloud 

resources in more efficient manner various makespan approach were developed in [7] and [8]; these approach 
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does show the potential but fails in terms of efficiency and possesses high computation overhead as these 

mechanism do not consider overlapping and non-overlapping scenario of shuffle phase. 

In past few years, Hadoop application has seen enormous growth and performance enhancement has been 

observed as well; there are various model of Hadoop some of  the effective methods are presented in  [9]-

[14],[17] and [18]; in [9] developed starfish model that gathers Hadoop task profile  for satisfactory granularity. 

In [10] developed scheduling mechanism named Elasticiser which was based on VM considered (as in starfish 

model) for resource allocation problem; however it leads to over-predicted task makespan and large overhead 

while gathering the active task profile (Hadoop task). Further, considering this drawback, [11]-[13] utilizes 

overlapping and non-overlapping phenomena and to predict the task, conventional LR (Linear regression) is 

adopted. Moreover these methods also predicts the amount of resources for different task with deadline as 

constraint. In [14] developed a mechanism named CRESP [28] for task execution prediction and further allows 

resource allocation based on MR slots; however, in here reduced jobs effect are often discarded. Moreover in 

[13] and [14] reduced jobs are kept as constant which leads the I/O and memory overhead and thus fails to 

provide the awareness regarding data locality. Hence, to address such issue and challenges, [17] designed 

centralized caching machine and further enhancement and distribution is shown in [18] and [19] with 

distributed caching and in [20] with shared caching. In [21] developed a model that provides lockless FIFO 

which integrates HMR and external applications; these models were designed for an architecture which is 

homogeneous in nature and hence they perform unsatisfactory in heterogeneous architecture [21] as it requires 

memory and I/O optimization approach. 

The major factor affecting makespan for executing task in HMR framework is scheduling mechanism during 

shuffle phase [22], [25], and [26]. In [23] presented joint scheduling scheme considering overlapping of 

Mapping and shuffling phase for reducing job execution time. In [24] for reducing I/O overhead topology 

presented aware hierarchical MR scheduler. The model aid in reducing overall I/O traffic and thus aid in 

reducing job execution makespan. In [25] presented a scheduling scheme namely shadow for increasing speed 

of shuffling phase execution. The model brings a good tradeoffs among Map task execution locality awareness 

and balancing load during shuffle phase. In [26] showed the existing doesn’t consider task dependency 

modelling for executing heterogeneous task; thus failed to achieve effective resource utilization. Thus, they 

presented an improved YARN scheduling design that reduce makespan of different induvial task. However, 

the makespan model presented in [23]-[26] doesn’t consider intermediate task failure; affecting makespan 

performance especially considering complex iterative applications. Thus, makes designing effective scheduling 

design for HMR framework even more a challenging task.  

This research work designs resource efficient memory aware scheduling for HMR framework; REMAS-

HMR is very much similar to work carried in [17]; further a thread based execution is considered for optimal 

memory utilization and minimization of I/O overhead, also this research work focuses on developing a dynamic 

memory distribution among the task throughout thread in one VM. Furthermore, this research work develops 

I/O model to improvise memory management for CPU and cross I/O, also REMAS-HMR helps in avoiding 

the re-reading the data before transmission which minimizes the task through caching final outcome of job in 

memory. Lastly, present a makespan model with data dependencies for executing simple and complex iterative 

task.  
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The significance of REMAS-HMR work: 

➢ The REMAS-HMR is designed using thread based execution realizing global memory management.  

➢ Presented task failure aware makespan model for executing simple and complex application.  

➢ No prior work has considered scheduling considering reducing I/O and memory overhead with task-failure 

aware makespan model together. As existing model such as [23], [24] addressed I/O overhead and [25], 

[26] addressed memory utilization overhead.  

➢ REMAS-HMR reduce makespan and computation cost for simple and complex workload; thus improves 

memory and processing core utilization when compared with existing scheduling design for HMR 

framework [23]-[26]. 

II. LITTERATURE SURVEY 

This section conduct survey of various existing scheduling design for Hadoop-MR framework proposed in 

recent times. In [9] designed location-aware HMR scheduler. The scheduling design relies mainly on the 

distance among the processing nodes and input information. Moreover, this particular technique tries to 

overcome the several issues such as requirement of storage capacity, high overhead and cost in the real time 

scenario. Although it performs reasonably well; nonetheless, induces scheduling delay affecting overall system 

performance. In [10] developed an optimization framework which was designed using cloud computing 

environment for data locality accomplishment and meet application task deadline prerequisite; in here heuristic 

approach were developed for provisioning the SLA requirement for cloud user. Further this approach 

developed an optimization mechanism for reducing the node size needed for processing the task; meanwhile 

single node failure issue was solved and tradeoff among the locality constraint and deadline reduction is 

presented. Moreover it was capable of minimizing the makespan and storage requirement; however task 

deadline constraint were completely ignored in consideration with scheduling in data intensive application. 

In [11] using metadata information of correlated tasks modelled improved HMR framework; in here 

NameNode was designed for finding the block that are preset in given cluster for storing the particular 

information. This method was proved to be better than the traditional approach of HMR model, in order to 

evaluate the presented model, bioinformatics application are considered and it achieved some makespan time 

minimization and I/O cost reduction, but they did not consider more complex application and performed only 

for lower sensitive bioinformatics application. In [12] presented a scheduling design for HMR framework for 

minimizing the delay as well as contention in the given network for performance enhancement; it helps in 

reducing the synchronization delay and scheduling various task at once, also theoretical evaluation were 

designed which shows the fair accuracy on text mining application such as wordcount applications. Although 

the methods were able reduce makespan, they experiment is not conducted using cloud computing platform 

and how model will perform when used for executing complex iterative application is not shown 

experimentally nor mathematically.  

In [13] developed an application named AffordHadoop for minimizing the cost, scheduling the task and 

allocating the data to enhance the efficiency; however AffordHadoop faces NP-hard problem when scheduling 

diverse task. For addressing such issue mathematical programming model named integer programming, 
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heuristic, and optimization approach were adoptedfor enabling realistic performance. Moreover performance 

evaluation were carried out on different applications such asTera-sort and Wordcount; the AffordHadoop 

achieved fair cost minimization, however fails to deliver for other metrics such as memory and computational 

core resource utilization. In [14], author develop a prediction based model for predicting the run time of tasks 

and resource allocation  for accomplishing the task in given assigned time; this causes to satisfy the deadline 

constraint. Further it uses different sub-phase of shuffle phase; upon evaluating the model on Tera-sort and 

Wordcount applications, it is able to achieve fair performance in terms of cost optimization and accuracy; 

however it possesses high overhead to complete the task for complex iterative applications such as 

bioinformatics and clustering applications. In [15] adopted PSO (Particle Swarm Optimization) based 

scheduling design for HMR framework; PSO mechanism helps in finding the optimal parameters in HMR 

framework for given specific task; however experiment is conducted on simple application on local cluster. 

Similarly [16] adopted a scheduling strategy for executing relative large data intensive applications for cost 

minimization using the geo-distributed data centers; this particular mechanism helps in deciding the parameter 

for choosing the datacenter; in here a framework is developed for analyzing the efficient information exchange 

and resource allocation, however task deadline constraint is not considered. 

In [23], it is observed that three phases of MapReduce includes mapping, shuffling and reducing; map phase 

is considered to be CPU sensitive whereas I/O intensive and these phases are performed parallely. Further, 

author performed joint scheduling for overlapping mapping and shuffling to optimize the makespan; moreover 

novel concept of weak and strong pair was introduced and pair is said to be strong if map and shuffle workloads 

of one job is equivalent to other and it is said to be weak, if total map workload of particular job is equivalent 

to the shuffle workloads. Moreover based on strong and weak pair the jobs are scheduled. Similarly [24] 

adopted mechanism which was based on the dynamic scheduling  for minimizing the shuffle traffic as several 

existing methodology failed to consider the impact of data centers. In here, Hit(Hierarchical topology) aware 

MR (MapReduce) was proposed for reducing the overall traffic cost  which in terms reduces the execution 

time; further TAA(Topology Aware Assignment) were developed in consideration with dynamic 

communication and computation resources in given cloud with hierarchical architecture. Later, synergistic 

strategy were designed to solve the TAA issue through stable matching mechanism that ensures in house 

preference of hosting and individual task machines. At last, scheduler is used as pluggable module on YARN 

and performance were evaluated on same.  

In [25] performed an extensive survey and found that slow shuffling is main reason for any degradation in 

MR job execution and only considerable amount of work has been carried out for shuffle phase speed 

optimization; hence a novel mechanism was presented for balancing the network loads on various cross rack 

links in shuffling phase for different sampling applications where random processing generates efficient results. 

Further, it also introduces several other tasks which offers various choice for selection of task while shuffling; 

however these schemes were designed for sampling based application only and they were not convenient for 

general application where whole data is processed. Meanwhile they observed that considering the high map 

locality, in shuffling phase networks are saturated but in map phase, it is fairly free. Thus it was concluded that 

little sacrifice in Map locality causes fair shuffling; hence they developed a mechanism named shadow only 

for the general application that are shuffle constrained and strikes tradeoff among shuffling load balance and 

map locality. In here, mechanism chooses original map task in iterative manner from the loaded rack and further 
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generates duplicate task on light loaded rack; moreover while processing shadow chooses option among 

replicated and original version through pre-approximation of job makespan. 

In[26] also performed fair amount of survey and introduces YARN mechanism integrated with resource 

management for scheduling of jobs and they made a point that fairness and efficiency are that major concern 

in resource management since resources shared by the various applications. Moreover, current scheduling 

mechanism in YARN does not provide the optimal resource management, hence this framework omits the 

dependency among the defined which is one of the major concern for resource utilization and heterogeneous 

characteristics in real time scenario. Further, animproved YARN scheduler was introduced to minimize the 

makespan time through leveraging requested information of dependency, resource capacities among tasks. 

Moreover it was noted that scheduler can be extended through job iteration information for scheduling.From 

survey it is seen how effective handling of memory resource aid in reducing makespan and overall cost of 

processing data intensive application on parallel computational framework adopting cloud computing 

environment. From survey it can be state there is need to develop a scheduling methodologies that reduce I/O, 

memory overhead, and minimize makespan considering intermediate task failure for HMR framework. Thus, 

this paper present such framework in next section below.  

 

Figure 2. Resource efficient memory aware scheduler for HMR Framework.   
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III. RESOURCE EFFICIENT MEMORY AWARE SCHDULER FOR HADOOP MAPREDUCE FRAMEWORK   

In this section, we present a new framework namely, Resource efficient and memory aware scheduler for HMR 

Framework as shown in Figure 2.First, discusses the system model of REMAS-HMR. Second, present I/O 

optimization technique adopted in REMAS-HMR framework to reduce disk seek time. Third, present Memory 

scheduling technique for realizing global memory management. Lastly, present a makespan model for 

mitigating intermediate task failure affecting overall scheduling performance.  

a) System model of REMAS-HMR framework: 

This section present the system model of REMAS-HMR. In standard Hadoop-MR framework, the tasks are 

executed on different nodes individually. However, in REMAS-HMR framework, the task will be executed 

using REMAS through MemorySchedular. The MemorySchedular is responsible for allocation and 

deallocation of memory resources. Here different worker will have different memory level and these 

information about memory resource capacity can be collected from GlobalList. The I/O scheduler pings 

ReadWorker for collecting information from disk and CleanWorker cleans information from the GlobalList. 

The REMAS-HMR realizes global memory management through GlobalList by adopting such data structure 

mechanism. In GlobalList, the intermediate data of different task are sorted and kept. For reading and cleaning 

data from the disk the I/O scheduler uses Multiple-buffers. In this way memory resource are utilized more 

efficiently aiding in reduction of makespan.    

b) I/O Scheduler for REMAS-HMR framework: 

Here the I/O scheduler is designed in such a way that it will attain better parallelization performance with 

minimal disk seek time by optimizing the MergeSort operations. Using standard I/O scheduling mechanism 

induces high I/O latency as jobs are separately in respective computing node without communicating with each 

other. Thus, this paper introduce a sequential I/O execution combining both CPU and Disk I/O together. The 

I/O scheduler is composed of ReaderWorker for carrying out reading operation and CleanerWorker for carrying 

out writing operations. Both ReaderWorker and CleanerWorker is composed of multiple buffers with different 

priorities which can be utilized to sort the read/write operations. In this work, we have static I/O and dynamic 

I/O where dynamic I/O has been given high priority; this is because dynamic I/O requires timely memory 

allocations. On the other side, the static I/O is given lesser priorities when compared with dynamic I/O. The 

static I/O is started only when intermediate data can’t be stored into the buffer and disk are cleaned temporally. 

The dynamic I/O function on buffer with higher priority composed of high read priority and low clean priority.    

c) Memory Scheduler for REMAS-HMR: 

The Memory scheduler for REMAS-HMR is designed considering following assumption. First, buffers size 

will be of varied size; thus for allocating memory resource to these buffer and effective optimization design 

must be modelled. Second, different MapReduce tasks will have different memory requirement; thus, dynamic 

memory allocation design is needed. The total size 𝑈𝑇 of different buffers is estimated using CacheList as 

follows   

𝑢𝑇 = 𝑇↑ − 𝐸𝑙𝑖𝑠𝑡𝑇
− 𝑁𝐷𝑇

 (1) 
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where 𝑇↑ represent memory size maximal limit for storing intermediate data, 𝐸𝑙𝑖𝑠𝑡𝑇
 represent the overall size of 

DataPairList, and 𝑁𝐷𝑇
   depicts I/O Scheduler overall memory usage.   

In similar manner, the MapController uses memory of size 𝑀𝐶𝑇 for executing Map task is computed using 

following equation 

𝑀𝐶𝑇 = min(𝑃𝐷𝑇
+ 𝑄𝑡𝑟𝑛𝑠𝑚𝐷𝑇

, 𝑈𝑇) (2) 

where 𝑃𝐷𝑇
 represent MSort buffer size and 𝑄𝑡𝑟𝑛𝑠𝑚𝐷𝑇

 defiens I/O buffer size. The MSort buffer size is computed 

using following equation  

𝑃𝐷𝑇
= {

𝑁𝑃↑ ∗ 𝑁𝑜  𝑁𝑃↑ ≠ 0

𝑄𝑃𝐷𝑇
          𝑁𝑃↑ = 0

 
(3) 

where 𝑁𝑃↑ represent MSort maximal size for executing each task, 𝑄𝑃𝐷𝑇
 defines current MSort buffer size 

and 𝑀𝑛 describes the total Map task current being processed. Then, the ReduceController memory size 𝑅𝐶𝑇 for 

executing task is computed using following equation 

𝑅𝐶𝑇 = 𝒯𝒮 − 𝑀𝑀𝐶𝒮 (4) 

The REMAS design keep enough memory in reserve for executing task; thus, avoid frequent recycling of 

memory and I/O resource. When certain task are completed, it logs or deregister from MapController; in this 

way 𝑁𝑜 can be obtained. MergeSorter serves caching information for SortBuffer from MapController and 

MTransmitWorkerunreserve the caching information which are being shuffled in TranmitBuffer and reallocate 

it to MapController; and evaluates 𝑃𝐷𝑇
 and𝑄𝑡𝑟𝑛𝑠𝑚𝐷𝑇

. Every Map tasks estimate their 𝑁𝑃↑ in dynamic manner 

prior to completing the task and send the information of 𝑁𝑃↑to MapController. Then, when any changes in 

memory information is established the MapController send these information to CentralController and 

CentralController decides the heap size for MemoryController and ReduceController.  

In similar manner to Map task, when a reduce task is started, it logs or unregister itself with 

ReduceController. Then, ReduceController segment the 𝑅𝐶𝑇 in uniform manner between runnable Reduce 

tasks. CollectorWorker retrieve memory resource for CollectionMemory from ReduceController; 

simultaneously, PusherWorker free its memory resource from CollectorMemory and ReduceController retain 

the resource. ReduceController updates the CentralController about its memory levels, which can be reutilized 

for executing Map task during memory constraints. During entire of process of job execution, memory usage 

pattern of CentralController will be in varying pattern; thus, memory usage can be optimized in dynamic 

manner. For example, when adjusted heap size of MapController is higher than previous iteration, in such case 

there is no memory constraint for executing tasks. Or else, there is no adequate resource and memory has to be 

freed from the disk as early as possible. In this work we define a threshold of MapController𝑀𝐶𝑇 as described 

in Eq. (2). When certain jobs execution memory requirement reaches beyond 𝑀𝐶𝑇, certain memory resource 

are freed.    

d) Task failure aware Makespan model for REMAS-HMR framework: 

This section presents a makespan model for mitigating task failure in REMAS-HMR. The makespan 𝒞 of for 

executing job can be computed using following equation 
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𝒞 = 𝒞𝒯 + 𝒞𝕄 + 𝒞ℝ. (5) 

where 𝒞𝒯 define makespan for initialization worker, 𝒞𝕄 depicts map job execution makespan, and 𝒞ℝ define 

reduce job execution makespan. Let consider that each worker 𝑞 is composed 𝑛 number of core/thread with 

memory size of 𝑥; then the average makespan for executing task can be computed using following equation 

𝒞𝕄 =
∑ 𝒞𝑎_𝕄

𝑞
𝑎=1

𝑞
 

(6) 

Similarly, for reduce task average makespan can be computed as 

𝒞ℝ =
∑ 𝒞𝑎_ℝ

𝑞
𝑎=1

𝑞
. 

(7) 

Using Eq. (6) and (7), the total makespan of REMAS can be computed as 

𝒞 = 𝒞𝒯 +
∑ (𝒞𝑎_𝕄 + 𝒞𝑎_ℝ)

𝑞
𝑎=1

𝑞
. 

(8) 

The job execution of different phase in REMAS-HMR varies. Thus, we bound these makespan into upper 

and lower bound for executing job 𝕂.The total makespan of 𝕂𝑡ℎ job considering best case circumstance in 

REMAS-HMR framework is computed using following equation 

𝒰 𝕂
𝕃𝑙𝑖𝑚 = 𝒰𝕄

𝕃𝑙𝑖𝑚 + 𝒰ℝ
𝕃𝑙𝑖𝑚 − (𝒰𝕄

𝕌𝑙𝑖𝑚 − 𝒰𝕄
𝕃𝑙𝑖𝑚) (9) 

where 𝒰 𝕂
𝕃𝑙𝑖𝑚 defines minimal makespan time for executing job 𝕂, 𝒰𝕄

𝕃𝑙𝑖𝑚 represent minimum time for executing 

map task, 𝒰ℝ
𝕃𝑙𝑖𝑚, 𝒰𝕄

𝕃𝑙𝑖𝑚 represent minimum time for executing reduce task,𝒰𝕄
𝕌𝑙𝑖𝑚 represent maximum time for 

executing map task. Similarly, the total makespan of 𝕂𝑡ℎ job considering worst case circumstance in REMAS-

HMR framework is computed using following equation 

𝒰 𝕂
𝕌𝑙𝑖𝑚 = 𝒰𝕄

𝕌𝑙𝑖𝑚 + 𝒰ℝ
𝕌𝑙𝑖𝑚 − (𝒰𝕄

𝕌𝑙𝑖𝑚 − 𝒰𝕄
𝕃𝑙𝑖𝑚) (10) 

The total makespan of job 𝕂 on REMAS-HMR platform can be obtained using following equation 

𝒰⃗ 𝕂 =
(𝒰𝕂

𝕌𝑙𝑖𝑚 + 𝒰𝕂
𝕃𝑙𝑖𝑚)

2
 

(11) 

Using Eq. (9) and (10), the total makespan 𝒰⃗ 𝕂 for executing job𝕂 is estimated using following equation 

𝒰⃗ 𝕂 =
((𝒰𝕄

𝕌𝑙𝑖𝑚 + 𝒰ℝ
𝕌𝑙𝑖𝑚 − (𝒰𝕄

𝕌𝑙𝑖𝑚 − 𝒰𝕄
𝕃𝑙𝑖𝑚)) + (𝒰𝕄

𝕃𝑙𝑖𝑚 + 𝒰ℝ
𝕃𝑙𝑖𝑚 − (𝒰𝕄

𝕌𝑙𝑖𝑚 − 𝒰𝕄
𝕃𝑙𝑖𝑚)))

2
 

(12) 

The simplified representation of total makespan is described below 

𝒰⃗ 𝕂 =
(3𝒰𝕄

𝕃𝑙𝑖𝑚 + 𝒰ℝ
𝕃𝑙𝑖𝑚 + 𝒰ℝ

𝕌𝑙𝑖𝑚 − 𝒰𝕄
𝕌𝑙𝑖𝑚)

2
 

(11) 

This work uses similar approach presented in [14], [27], and [28] to model data dependency using linear 

regression. The REMAS-HMR design minimize makespan and reduce cost for executing text mining and 

iterative application when compared with existing HMR scheduling methodologies by effective utilization of 

memory and processing core resource which is experimentally shown below. 
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IV. RESULT AND DISCUSSION   

Here experiment is conducted to evaluate the performance of REMAS-HMR over HaSTE [26]. The system 

parameter used for experiment analysis is Ubuntu 16 operating system configured with 8GB RAM and two 

cores. Hadoop cluster with one master and two slave node of identical configuration is used similar to 

HDInsight Azure A2_v2 instance [29]. Experiment is conducted on simple Wikipedia dataset of size varied 

from 250 MB to 1 GB [26], [30]. Further, experiment is conducted using complex sensor data of size varied 

from 100MB to 400 MB [31]. Outcome is measured in terms of makespan and computational cost for executing 

above workload using respective scheduling mechanism.  

a) Simple Wordcount applications: 

The makespan outcome achieved for executing simple workload of varied size by HaSTE and REMAS-HMR 

is shown in Fig. 3. REMAS-HMR reduces makespan by 4.52%, 4.912%, 6.163%, and 7.21% when compared 

with HaSTE when workload size is 200MB, 400MB, 600MB and 1600MB, respectively. From result obtained 

it can be stated that REMAS-HMR improves makespan performance by 5.7% on an average when compared 

with HaSTE. The computational cost induced for executing simple workload of varied size by HaSTE and 

REMAS-HMR is shown in Fig. 4. REMAS-HMR reduces computational cost by 4.89%, 5.272%, 6.52%, and 

7.56% when compared with HaSTE when workload size is 200MB, 400MB, 600MB and 1600MB, 

respectively. From result obtained it can be state that REMAS-HMR reduce computation cost by 6.06% on an 

average when compared with HaSTE under varied workload scenarios. 

 

Fig. 3. Makespan performance for executing simple workload. 
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Fig. 4. Computational cost for executing simple workload. 

b) Complex Kmeans applications: 

The makespan outcome achieved for executing complex workload of varied size by HaSTE and REMAS-HMR 

is shown in Fig. 5. REMAS-HMR reduces makespan by 2.94%, 4.53%, 5.91%, and 6.7% when compared with 

HaSTE when workload size is 50MB, 100MB, 250MB and 500MB, respectively. From result obtained it can 

be state that REMAS-HMR improves makespan performance by 5.01% on an average when compared with 

HaSTE. The computational cost induced for executing complex workload of varied size by HaSTE and 

REMAS-HMR is shown in Fig. 6. REMAS-HMR reduces computational cost by 3.31%, 4.892%, 6.27%, and 

7.05% when compared with HaSTE when workload size is 50MB, 100MB, 250MB and 500MB, respectively. 

From result obtained it can be state that REMAS-HMR reduce computation cost by 3.38% on an average when 

compared with HaSTE under varied workload scenarios.  
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Fig. 5. Makespan performance for executing complex workload. 

 

Fig. 6. Computational cost for executing complex workload. 

V. CONCLUSION 

Managing memory resource is a challenging task. Since different phases of MapReduce job are executed 

concurrently. This paper presented resource efficient memory aware scheduling adopting dynamic memory 

management technique and thread based task execution. Further, designed task-failure aware makespan model 

with dependencies for REMAS-HMR; thus, uses memory resource and multi-core processing resource more 

efficiently when compared with existing HMR scheduler. Experiments are conducted using simple and 

complex workload. From result achieved it can be seen the REMAS-HMR reduce makespan and cost by 5.6% 

and 6.06% when compared with HaSTE for simple workload, respectively. Similarly, REMAS-HMR reduce 

makespan and cost by 5.01% and 3.38% when compared with HaSTE for complex workload, respectively. 
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Thus, REMAS-HMR is efficient for running simple and complex iterative task. Though the REMAS-HMR 

achieves good result; still it is important to test the outcome considering heterogeneous workload. Further, it is 

important to identify job pattern for improving scheduling mechanism to improve resource utilization.  
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